
From Two-Way to One-Way Finite
Automata—Three Regular Expression-Based

Methods

Mans Hulden(B)

University of Colorado Boulder, Boulder, USA
mans.hulden@colorado.edu

Abstract. We describe three regular expression-based methods to char-
acterize as a regular language the language defined by a two-way automa-
ton. The construction methods yield relatively simple techniques to
directly construct one-way automata that simulate the behavior of
two-way automata. The approaches also offer conceptually uncompli-
cated alternative equivalence proofs of two-way automata and one-way
automata, particularly in the deterministic case.

1 Introduction

An early result in automata theory is that of the equivalence of two-way and
one-way finite automata. Rabin and Scott [13] outlined a proof of this equiva-
lence by analyzing the so-called crossing sequences that occur during the accep-
tance of a string by a two-way automaton. This proof was slightly simplified by
Shepherdson [15]. Later, Vardi [16] has shown equivalence through a subset con-
struction that is used to characterize the complement of the language accepted
by a two-way nondeterministic automaton. The crossing sequences proof and
construction is more involved if one wants to include non-deterministic two-way
automata (2NFA) in addition to deterministic ones (2DFA). While these meth-
ods in principle allow for the construction of the equivalent one-way automaton,
the calculations involved are rather complex. In the crossing sequences approach,
this calls for the analysis of the possible crossing sequences for possible prefixes of
strings, and the complement construction requires laborious bookkeeping. While
two-way automata have been analyzed intensely, especially as regards theoret-
ical size bounds in conversions from two-way to one-way automata and state
complexity of operations [3,4,7,8,10–12], practical conversion algorithms have
received less attention. The intricacies involved in previous conversion methods
may also be reflected in the paucity of actual implementations for converting
arbitrary two-way to one-way automata.

In this paper, we describe a new method to characterize the language
accepted by some two-way automata (2DFA/2NFA). Our approach is very direct:
we model the set of accepting computation sequences of a two-way automaton
as strings in a regular language that includes annotations about the behavior of
a two-way automaton. Following this, a homomorphism is applied to delete the
c© Springer International Publishing Switzerland 2015
F. Drewes (Ed.): CIAA 2015, LNCS 9223, pp. 176–187, 2015.
DOI: 10.1007/978-3-319-22360-5 15

From Two-Way to One-Way Finite Automata 177

annotations, yielding the set of actual strings accepted by a two-way automaton.
Central to the modeling is a compact simulation of the accepting sequences of
a given 2DFA/2NFA. Apart from providing a construction method, the app-
roach also gives an alternative to the equivalence proofs of one-way and two-way
automata customarily provided in most textbooks on automata (e.g. [5,9,14]).

2 Notation and Definitions

We define a 2NFA M the standard way as a 5-tuple (Σ,Q,Q0, δ, F), where Σ
denotes the alphabet, Q the finite set of states, a set of initial states Q0 ⊆ Q.
The transition function is denoted by δ : Q × Σ → 2Q×{L,S,R}, and the set of
final states by F ⊆ Q. If |δ(q, a)| ≤ 1 for all q ∈ Q and all a ∈ Σ and |Q0| = 1,
the automaton is deterministic. We say M accepts a string w whenever there
is a transition path in M from an initial state to a final state such that M
at each state moves its read head in the direction specified by the transition
function (to the left (L), right (R), or staying (S)) and ends up at the right edge
of w. Formally, we can define acceptance as a specific series of configurations
using strings of the format Σ∗QΣ∗. A string wqx describes the circumstance
where the input string is wx and q is the current state when M is scanning the
first symbol of x. We say wpax � waqx is a permitted change of configuration
if (q,R) ∈ δ(p, a), as is wbpax � wpbax if (q, L) ∈ δ(p, a) and |b| = 1, and
wpax � wqax if (q, S) ∈ δ(p, a). We say M accepts w if there exists some choice
of a sequence of configuration changes such that pw � . . . � wq, where p ∈ Q0

and q ∈ F .
In the following, we also make use of extended regular expressions to denote

operations on regular languages. We will make use of the following standard
notational devices in regular expressions: a is a single symbol drawn from an
alphabet, ε is the empty string, and ∅ the empty language. Additionally we use
the following operators: L1L2 (denoting concatenation), L1∪L2 (union), L1∩L2

(intersection), ¬ L1 (complement), L1 − L2 (subtraction), L∗
1 (Kleene closure)

and L+
1 (Kleene plus). We also make use of the fact that regular languages are

closed under homomorphisms h : Γ ∗ → Σ∗.

0

a,R
1b,R

a,R

2

b,L

b,L

a,R

Fig. 1. Example (deterministic) 2DFA M with initial state 0. The language described
is (a|ba)∗(b|ε).

178 M. Hulden

3 Overview

The general idea behind the three methods given below is to simulate accepting
or nonaccepting move sequences of a two-way automaton by a specific string
representation, the correctness of which is locally checkable, that is, verifiable
by a one-way automaton. The verification can be modeled through regular
expressions.

We model the set of accepting computations of a two-way automaton M oper-
ating over the alphabet Σ as a regular set of strings over an auxiliary alphabet
Γ and the original alphabet Σ. In particular, strings in this language consist of
symbols from Σ (the alphabet of M), interspersed with auxiliary substrings that
characterize relevant movements of the 2DFA/2NFA. The auxiliary alphabet Γ
consists of symbols representing states in Q as well as symbols corresponding to
possible moves {L, S,R,C}, i.e. Γ = {q0, . . . , qn, L, S,R,C}. The symbol C is a
move that models a crash (only used in the second construction method). We
enforce that these auxiliary substrings always come in triplet-size chunks where
the three-symbol sequence encodes a move by M in the order (1) the source
state, (2) the target state, and (3) the direction of movement (left, right, stay).

Fig. 2. Example of an accepting sequence for the 2DFA in Fig. 1 in our string encod-
ing (a). The arrows show which source-target-direction triplets license the presence of
others in the first construction method. The figure (b) illustrates the computation of
the 2DFA the the string effectively encodes.

Figure 2 shows such a sequence in our encoding. The intuition behind the
constructions is that, out of all possible sequences over (Γ ∪ Σ)∗, we want to
characterize all and only those that fulfill criteria that correspond to acceptance
or non-acceptance of a string over Σ by some two-way automaton M . We do so
by providing additional local constraints on these strings to simulate the legal
movements in a 2DFA/2NFA.

In such an string, we say that any subsequence of symbols from Γ is in the
same position as another subsequence from Γ so long as there are no intervening
symbols from Σ between the two. For example, in Fig. 2, 11R and 20R are in the
same position, while 20R is in the position preceding 12L.

From Two-Way to One-Way Finite Automata 179

4 Method 1: 2DFA to 1NFA/1DFA

In this construction method, which applies to deterministic two-way automata
only, the idea is to declare a language over (Γ ∪ Σ)∗ in such a way that the first
Γ -triplet at the left edge corresponds to movement from an initial state, and that
any other two-symbol sequences representing state pairs present at any position
need to all be ‘licensed’ by some previous move from a previous position. We
also require that all strings end in a qq sequence, reflecting a halt in a final state
at the right edge of a string.

More formally, the conditions for well-formedness of a string w in our encod-
ing for an accepting sequence by a 2DFA M can be specified as follows:

(1) The string w is of the form (T+a)∗ Tend, where T is any three-symbol
sequence pqD representing transitions of M where p and q correspond to
a valid transition p → q in M between states in Q using symbol a, and
D ∈ {L, S,R} denotes the corresponding direction of movement in M . Tend

is a two-symbol string qq, where q is any final state in M .
(2) Additionally, when w contains a two-symbol sequence pq, then at least one

the following holds:
(i) p corresponds to the initial state Q0 in the definition of M and is at the

left edge of w.
(ii) there is a substring pS in the same position in w.
(iii) there is a substring pL in the following position in w.
(iv) there is a substring pR in the preceding position in w.

For example, in Fig. 2, the first occurrence of 01 is permitted since it occurs
at the left edge of the word and 0 is an initial state in M (by condition (2i)),
while the second occurrence is permitted because the preceding position contains
0R (by condition (2iv)). Likewise, 20 is permitted because it is followed by 2L in
the following position (condition (2iii)), etc.

Note that the constraints above say nothing about the order in which the
triplets themselves are permitted. There may also be arbitrary repetitions of the
same triplets within a position, so long as their presence is allowed by conditions
(1) and (2i-iv); these two questions are irrelevant for purposes of the encoding.
By the same token, the encoding says nothing about the specific order in which
the moves actually occur when M accepts a word w—only that each substring
representing a move or halting be licensed by some other substring representing
another move, save for the base case of the initial state symbol, which is always
allowed as the first symbol in the string.

The sets of strings that satisfy (1) and (2i-iv) is regular, and an automaton
that accepts the sets is easily constructed (see below for precise regular expres-
sions).

If we call the language where all strings fulfill condition (1) Lbase and the
language where all strings fulfill conditions (2i-iv) Llicense, we have, for a homo-
morphism that deletes symbols in Γ , h(a) = ε for all a in Γ :

L1 = h(Lbase ∩ Llicense) (1)

180 M. Hulden

Theorem 1. M accepts a word w iff w ∈ L1.

Proof. First, consider the case where M accepts w. By induction on the num-
ber of steps in the computation of M , we see that (Lbase ∩ Llicense) then con-
tains a string ending in qq, for some final state q, and hence that w ∈ L1.
In the other direction: all strings in (Lbase ∩ Llicense) end in the sequence
qq (by definition). Now, such a string qq is only permitted by the presence
of some other move encoding at some position which in turn is permitted by
some previous move, etc. (by 2ii-iv), forming a sequence of position-state pairs
(p1, q1) ← (p2, q2) . . . ← (pk, qk), tracing the computation backward. In such
a sequence no position-state pair may repeat, since—by assumption—the two-
way automaton is deterministic. In other words, repetition of a state-position
pair (pi, qj) with symbol a at position pi would imply that |δ(qi, a)| > 1. Since
there are only |Q|n possible unique position-state pairs for a string of length n,
this sequence must terminate, which is only possible by (2i). Hence, the final
substring qq must ultimately be licensed by the initial state and the sequence
describes a legitimate accepting path in M . ��

5 Construction Details

The construction described above can be immediately implemented for an arbi-
trary 2DFA M .

We use the alphabets:

• Σ (of M)
• Γ = {q0, . . . , qn, L, S,R}
• Δ = Σ ∪ Γ (as shorthand)

The language Lbase, which enforces the general structure of the string, can
be defined as:

Lbase =
(
T+
a1

a1 ∪ . . . ∪ T+
an

an

)∗
Lend (2)

for symbols a1, . . . , an ∈ Q. Here, Tai
contains all three-symbol strings pqD

corresponding to M ’s transitions p → q reading symbol ai and moving in the
direction D. Formally, pqD ∈ Tai

iff (q,D) ∈ δ(p, ai).
Lend is the set of two-symbol strings qq, where q is a halting state in M .

That is, qq ∈ Lend iff q ∈ F .
To describe Llicense, we make use of the regular expression idiom

¬(¬S T ¬U)

to convey the idea that strings drawn from the set T must either be preceded
by some string from the set S or followed by some string from U . This allows us
to express the relevant parts of (2i-iv) above concisely. We assume that we have
a set of single symbols Q ⊂ Γ , representing the states of M . Now conditions
(2i-iv) for some state q are expressed as:

From Two-Way to One-Way Finite Automata 181

Llicenceq = ¬(¬(Z ∪ Δ∗qSΓ ∗
︸ ︷︷ ︸
‘stay’ move

in same

position to

the left

∪ Δ∗qRΓ ∗ΣΓ ∗)
︸ ︷︷ ︸
‘right’ move in

previous position

qQ¬(Γ ∗ΣΓ ∗qLΔ∗
︸ ︷︷ ︸
‘left’ move in

following posi-

tion

∪ Γ ∗qSΔ∗)
︸ ︷︷ ︸

‘stay’ move in

same position

to the right

)

(3)
Here,

Z =

{
ε if q ∈ Q0

∅ otherwise
(4)

In other words, a sequence qQ (the symbol for state q followed by any other
state symbol), must be preceded by right move in the previous position or a stay
move in the same position with target state q, or followed by a stay move in
the same position or a left move in the following position with target state q.
Note that the ‘stay’ move is brought up twice in the expression because within a
position, the moves listed are in arbitrary order, and we must therefore account
for the possibility that an S-move can occur either to the left or the right of the
relevant state symbol q. Additionally, symbols representing an initial state may
always occur initially in the string (modeled by Z).

For a 2DFA M with states Q = q0, . . . , qn, the language L1 is then

h(Lbase ∩ Llicense0 ∩ . . . ∩ Llicensen) (5)

6 Method 2: 2NFA to 1DFA by Complement
Construction

The previous method cannot be used to convert a nondeterministic two-way
automaton to a 1DFA as is seen from the correctness argument which hinges
on the two-way automaton being deterministic. However, we can use the same
string encoding to create a similar setup where we model as a regular set all and
only the words the are rejected by some 2NFA, i.e. the complement of accep-
tance.

The only minor change to the encoding used previously is in the auxiliary
alphabet, which now becomes Γ = {q0, . . . , qn, L, S,R,C}. the symbols L, S,R
are as before, and the symbol C is an extra arbitrary symbol we use to denote a
‘crash’ configuration—either a state that has no outgoing transitions with some
symbol, or a nonfinal state at the right edge.

In this construction, the idea is to capture all possible failing paths as a reg-
ular language by (1) insisting that all initial states be present as source states in
the first position of the string encoding, and (2) requiring that each move encod-
ing be followed by another move encoding or a crash—note that this enforce-
ment is different from method 1 where we permitted a state-pair in the string if
it resulted from a legitimate previous move; here we require a subsequent move
for any state-pair. In other words, the presence of each transition triplet pqD

182 M. Hulden

requires the presence of all legal transition triplets qrD in the following, preced-
ing, or the current positions (for moves right, left, stay). For any state q without
an outgoing transition with the symbol in that position, this requirement will
also be satisfied by a triplet qqC. Such crash triplets do not themselves require
a follow-up move. This encoding ensures that if a valid path through a 2NFA M
exists, that path cannot be encoded in our string representation, since we lack
a halting configuration. Conversely, the encoding contains all invalid paths.

Here, we have the following requirements on the well-formedness of a string
w in the encoding:

(1) The string w is of the form (T1 . . . Tkai)∗ Tend, where the T s are three-
symbol transition sequences of the form p1q1D1, . . . , pkqkDk corresponding
to all transitions from p in M using symbol a, and moving to q, and D ∈
{L, S,R,C} denotes the corresponding direction of movement in M . In case
a state has no transition with a, ppC may be present. Tend is a three-symbol
string qqC, where q is any nonfinal state in M . Also, the first position in
string w contains all sequences pq where p ∈ Q0 and some q ∈ Q.

(2) Additionally, when w contains a two-symbol sequence pD where p ∈ Q
(representing a state in Q) and D ∈ {L, S,R}, then the following holds:
(i) if D is L there is a substring pq in the preceding position in w, where

q ∈ Q, or pD is in the leftmost position.
(ii) if D is R there is a substring pq in the following position in w, where

q ∈ Q.
(iii) if D is S there is a substring pq in the current position in w, where q ∈ Q.

Condition (1) enforces the general well-formedness of the strings, assuring
that each symbol in Σ is surrounded by sequences of triplets corresponding to
valid transitions in M . Also, if one triplet pqD is present, all other possible
outgoing transitions from p also need to be listed. It also sets up the base case
that all initial states are represented at the first position. Conditions (1) and
(2) also ensure that any transition modeled is followed by all possible outgoing
transitions from the target state, or, in the case that the target state has no
valid outgoing transitions and is nonfinal, that fact is marked by a ppC, where
p is the state with no outgoing transitions with the symbol at hand.

Again, the conditions (1)–(3) are all local and easily testable by DFA(s) and
hence the set of strings that fulfill all conditions is a regular set.

We now claim, using the same pattern as before, that the language where
all strings fulfill condition (1) Lbase and the language where all strings fulfill
conditions (2i-iii) Llicense, we have for a homomorphism h(a) = ε for all a in Γ :

L2 = Σ∗ − h(Lbase ∩ Llicense) (6)

Theorem 2. A 2NFA M accepts a word w iff w ∈ L2.

Proof. Suppose M accepts w. Then the accepting path through M will be mod-
eled by (1) and (2i-iii) in Lbase ∩ Llicense with the exception of the accepting
move which is never permitted, and so w is not in h(Lbase ∩ Llicense). M can

From Two-Way to One-Way Finite Automata 183

reject a word w if all paths in the computation eventually lack a transition for
the symbol being read, end up at the right edge of a word in a nonfinal state,
or try to transition left at the left edge. All such configurations are accepted by
Lbase ∩ Llicense, and hence w is in the language h(Lbase ∩ Llicense). ��
Details of the actual construction are very similar to that of the first method
and are omitted here.

6.1 A Note on the Construction

This approach bears similarities to the method suggested by Vardi [16]. In that
work, a type of subset construction is used that directly constructs the states in
the complement language accepted by a 2NFA. That construction relies on the
following lemma:

Lemma 1 (Vardi, 1989). Let M = (Σ,Q,Q0, δ, F) be a two-way automaton,
and w = a0, . . . , an be a word in Σ∗. M does not accept w if and only if there
exists a sequence T0, . . . , Tn+1 of subsets of Q such that the following conditions
hold:

1. Q0 ⊆ T0

2. Tn+1 ∩ F = ∅
3. for 0 ≤ i ≤ n, if q ∈ Ti, (q′, k) ∈ δ(q, a), and i + k > 0, then q′ ∈ Ti+k

It is assumed here that k is an integer {−1, 0, 1} corresponding to the direc-
tions of movement in the transition function ({L, S,R} in our notation).

One of the consequences of this more abstract construction is that it cannot
directly be used to model the set of strings accepted by a 2NFA, and requires
the complement construction.1 Our regular language 2NFA-1DFA construction,
however, can be modified to do precisely that which is alluded to in [16]; we
present the details of this additional construction method below.

7 Method 3: 2NFA to 1DFA Directly

With the 2NFA-1DFA construction above, is it not possible to directly model the
set of accepting sequences by a 2NFA M , instead of modeling the complement?
That is, can one not combine the techniques in method 1 and method 2 and
construct a language that contains the same triplets that mark transitions in such
a way as to only contain valid computation sequences of M that end in a final
state. This would mean, in addition to enforcing the overall format of the strings,

1 “It may be tempting to think that it is easy to get a similar condition to acceptance of
w by A. It seems that all we have to do is to change the second clause in [the lemma]
to Tn+1 ∩ F �= ∅. Unfortunately, this is not the case; to characterize acceptance we
also have to demand that the Ti’s be minimal. While the conditions in the lemma
are local, and therefore checkable by a finite-state automaton, minimality is a global
condition.” [16], p. 3.

184 M. Hulden

requiring that all well-formed strings have initial states represented at the left
edge, and that each transition pqD ‘require’ that a subsequent transition from
q be present in the appropriate position, except for a final qq, at the right edge.
Additionally, any ‘crash’ configuration would of course not be in the language.
The problem with such an idea is exactly what is touched upon in [16]—that
one must also require that any accepting path be minimal. This is illustrated
in Fig. 3. Here (a) exemplifies a nonminimal path that leads to acceptance since
the path of computation from the left edge fulfills the criteria by ending in
a loop. Additionally, there is a spurious transition triplet before y leading to
acceptance. In (b) we see the corresponding minimal path induced by the same
string, showing a case of non-acceptance.

Fig. 3. Illustration of a nonminimal path starting from the initial state with a spurious
path which causes nonminimality, together with the corresponding minimal path.

The idea behind this third construction is to modify the construction so
that only minimal paths are in the simulation. To do this, consider the lan-
guage L = Lbase ∩ Llicense that contains strings over Σ (with interspersed path
descriptions) if M accepts, but that also includes spurious nonminimal paths.
Now, consider the homomorphism h(a) = ε for all a in Γ . Define an operation
insert(L): {y | x ∈ L ∧ h−1(x) = y ∧ |x| < |y|}, i.e. the inverse homomorphism
with the additional requirement that at least one symbol from Γ is inserted. If
L is regular, so is obviously insert(L). In practice, we model this by composition
of the identity transducer for L with a transducer Ins (see Fig. 4) that inserts at
least one symbol from Γ , and reconvert to an automaton by taking the output
projection: proj 2(Id(L) ◦ Ins(Γ)).

Fig. 4. Illustration of insertion transducer Ins.

The insert-operation can be used to remove the nonminimal paths in some
language L that represents computations in the string encoding, and we can
define the set of accepting strings by a 2NFA directly as:

L3 = h(L − Insert(L)) (7)

From Two-Way to One-Way Finite Automata 185

Taking advantage of this, we can define the conditions for any w as follows,
and then use our ability to enforce minimality.

Here, we have the following requirements on the well-formedness of a string
w in the encoding:

(1) The string w is of the form (T ∗a)∗ (Tend∪ε), where T is a set of three-symbol
transition sequences of the form pqD corresponding to some transitions p in
M using symbol a, and moving to q, and D ∈ {L, S,R} denotes the corre-
sponding direction of movement in M . Tend is a set of two-symbol strings qq,
where q is any final state in M . Also, the first position in string w contains
a sequence pq for all p ∈ Q0 and some q ∈ Q

(2) Additionally, when w contains a two-symbol sequence pD where p ∈ Q
(representing a state in Q) and D ∈ {L, S,R}, then the following holds:
(i) if D is L there is a substring pq in the preceding position in w, where

q ∈ Q.
(ii) if D is R there is a substring pq in the following position in w, where

q ∈ Q.
(iii) if D is S there is a substring pq in the current position in w, where q ∈ Q.

In essence, we have modified method 2 to remove the possibility of including
any ‘crash’ moves, and added the possibility of having qq substrings at the right
edge to signal what would be an accepting path in M . We have also removed
the requirement of follow-up states to moves carrying all possible transitions,
i.e. we’re not exploring paths in parallel with the model.

Again, call the language that conforms to (1) and (2) L, which is obviously
regular, and we may construct the following language:

L3 = h((L − Insert(L)) ∩ (Δ∗QQ)) (8)

Theorem 3. M accepts a word w iff w ∈ L3.

Proof. Suppose M accepts w. Then, by induction we see that L contains a string
ending in qq and so w ∈ L3. Conversely, if the language L contains a string u
that ends in qq, then either (1) M accepts h(u) or (2) running M on h(u) would
end in a nonterminating loop, and additional symbols are present in u that
model another path ending in qq that does not start from an initial state. But
then, in the latter case, L also accepts a shorter string u′ that does not contain
the subpath ending in qq. But this implies that u is not in h((L − Insert(L)) ∩
(Δ∗QQ)), and that M accepts w. ��

8 Implementations

The methods above are practical and relatively straightforward to implement
in very little space, assuming one has access to a compiler for regular expres-
sions. We have developed a simple conversion tool that reads descriptions of
2DFAs/2NFAs and converts them into regular expressions as defined above,

186 M. Hulden

which can then be compiled into one-way automata.2 For the implementation
we rely on the regular expression formalism supported by the PARC Finite-State
Tool [1] and the finite-state toolkit foma [6].

Fig. 5. Two-way automaton.

Table 1. Illustration of the growth in states when intersecting the sublanguages in
suboptimal order (right) and the more efficient order that includes the Lbase (left)
with method 1, compiling the 2DFA in Fig. 5. The final 1DFA has 66 states.

k size(Lbase ∩ Llicense0 ∩ . . . ∩ Llicensek) size(Llicense0 ∩ . . . ∩ Llicensek)

0 33 58

1 77 1,394

2 112 29,634

3 166 589,570

4 204 11,271,170

5 226 NF

6 210 NF

7 131 NF

8 138 NF

9 181 NF

9 Practical Concerns

In an actual implementation it is important to calculate the intersections
Lbase ∩ Llicense0 ∩ . . . ∩ Llicensek in left-to-right order to avoid undesired expo-
nential growth in the number of states. The Llicense-languages (except for the
0-case) are symmetrical and therefore of the same size (n states) and so, in the
worst case, the size of the minimal DFA result of intersection is nk [2]. Sepa-
rately constructing Lbase and Llicense0 ∩ . . . ∩ Llicensen is suboptimal in practice
and quickly leads to unnecessary growth in the result, which would often be
curbed had the general structure of Lbase been imposed first. This is illustrated
in Table 1. There we also see that the maximal partial result in the example is
not substantially larger than the resulting final minimized DFA, if intersection
is done in the proposed order. It is, of course, also advisable to minimize partial
results through standard DFA-minimization. Additional optimizations not pre-
sented above for the sake of clarity include constraining the positions between
the symbols from Σ to not contain repetitions of triplets representing transitions.
2 Available at https://github.com/mhulden/2nfa.

https://github.com/mhulden/2nfa

From Two-Way to One-Way Finite Automata 187

10 Conclusion

We have presented three variants of a basic approach to converting 2DFA/2NFA
to one-way automata. The construction methods offer a way to leverage the exis-
tence of efficient tools for compiling extended regular expressions into one-way
automata, and thus makes it practicable to integrate two-way specifications into
practical applications. We expect that the simulation method can be extended to
cover more specific and constrained variants of two-way automata and two-way
transducers.

References

1. Beesley, K.R., Karttunen, L.: Finite State Morphology. CSLI Publications,
Stanford (2003)

2. Birget, J.C.: Intersection and union of regular languages and state complexity. Inf.
Process. Lett. 43(4), 185–190 (1992)

3. Birget, J.C.: State-complexity of finite-state devices, state compressibility and
incompressibility. Math. Syst. Theor. 26(3), 237–269 (1993)

4. Chrobak, M.: Finite automata and unary languages. Theoret. Comput. Sci. 47,
149–158 (1986)

5. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading (1979)

6. Hulden, M.: Foma: a finite-state compiler and library. In: Proceedings of the 12th
Conference of the European Chapter of the Association for Computational Lin-
guistics, pp. 29–32. Association for Computational Linguistics (2009)

7. Kapoutsis, C.A.: Removing bidirectionality from nondeterministic finite automata.
In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 544–
555. Springer, Heidelberg (2005)

8. Kapoutsis, C.A.: Size complexity of two-way finite automata. In: Diekert, V.,
Nowotka, D. (eds.) DLT 2009. LNCS, vol. 5583, pp. 47–66. Springer, Heidelberg
(2009)

9. Kozen, D.C.: Automata and Computability. Springer, New York (1997)
10. Kunc, M., Okhotin, A.: Describing periodicity in two-way deterministic finite

automata using transformation semigroups. In: Mauri, G., Leporati, A. (eds.) DLT
2011. LNCS, vol. 6795, pp. 324–336. Springer, Heidelberg (2011)

11. Kunc, M., Okhotin, A.: State complexity of union and intersection for two-way non-
deterministic finite automata. Fundamenta Informaticae 110(1), 231–239 (2011)

12. Mereghetti, C., Pighizzini, G.: Optimal simulations between unary automata.
SIAM J. Comput. 30(6), 1976–1992 (2001)

13. Rabin, M., Scott, D.: Finite automata and their decision problems. IBM J. 3(2),
114–125 (1959)

14. Shallit, J.: A Second Course in Formal Languages and Automata Theory. Cam-
bridge University Press, Cambridge (2008)

15. Shepherdson, J.C.: The reduction of two-way automata to one-way automata. IBM
J. Res. Dev. 3, 198–200 (1959)

16. Vardi, M.Y.: A note on the reduction of two-way automata to one-way automata.
Inf. Process. Lett. 30(5), 261–264 (1989)

	From Two-Way to One-Way Finite Automata---Three Regular Expression-Based Methods
	1 Introduction
	2 Notation and Definitions
	3 Overview
	4 Method 1: 2DFA to 1NFA/1DFA
	5 Construction Details
	6 Method 2: 2NFA to 1DFA by Complement Construction
	6.1 A Note on the Construction

	7 Method 3: 2NFA to 1DFA Directly
	8 Implementations
	9 Practical Concerns
	10 Conclusion
	References

